Abstract
Abstract
We present findings from an analysis of the fractal dimension of solar supergranulation as a function of latitude, supergranular cell size and solar rotation, employing spectroheliographic data in the Ca ii K line of solar cycle no. 23. We find that the fractal dimension tends to decrease from about 1.37 at the equator to about 1 at 20° latitude in either hemisphere, suggesting that solar rotation rate has the effect of augmenting the irregularity of supergranular boundaries. Considering that supergranular cell size is directly correlated with fractal dimension, we conclude that the mechanism behind our observation is that solar rotation influences the cell outflow strength, and thereby cell size, with the latitude dependence of the supergranular fractal dimension being a consequence thereof.
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献