Relativistic angular redshift fluctuations embedded in large scale varying gravitational potentials

Author:

Lima-Hernández Adal,Hernández-Monteagudo Carlos,Chaves-Montero Jonás

Abstract

AbstractWe compute the linear order, general relativistic corrections to angular redshift fluctuations (ARF), a new cosmological observable built upon density-weighted two-dimensional (2D) maps of galaxy redshifts. We start with an existing approach for galaxy/source counts developed in the Newtonian gauge, and generalize it to ARF, modifying for this purpose a standard Boltzmann code. Our calculations allow us identifying the velocity terms as the leading corrections on large scales, emphasizing the sensitivity of ARF to peculiar, cosmological velocity fields. Just like for standard 2D clustering, the impact of gravitational lensing on ARF is dominant on small angular scales and for wide redshift shells, while the signatures associated to gravitational potentials are extremely small and hardly detectable. The ARF also present interesting correlation properties to anisotropies of the Cosmic Microwave Background (CMB): they are highly correlated to CMB lensing potential fluctuations, while also exhibiting a significant (S/N∼ 4–5)anti-correlation with the Integrated Sachs-Wolfe effect (ISW). This negative ARF×ISW signal is quite complementary to the standard 2D clustering×ISW correlation, since the former appears mostly at higher redshift (z∼ 2) than the latter (z≲ 1), and the combination of the two observables significantly increases theχ2statistics testing the null (no ISW) hypothesis. We conclude that ARF constitute a novel, alternative, and potentially powerful tool to constrain the nature of Dark Energy component that gives rise to the ISW.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Redshift weighted galaxy number counts;Journal of Cosmology and Astroparticle Physics;2022-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3