Abstract
Abstract
We revisit stellar constraints on dark photons. We undertake dynamical stellar evolution simulations which incorporate the resonant and off-resonant production of transverse and longitudinal dark photons. We compare our results with observables derived from measurements of globular cluster populations, obtaining new constraints based on the luminosity of the tip of the red-giant branch (RGB), the ratio of populations of RGB to horizontal branch (HB) stars (the R-parameter), and the ratio of asymptotic giant branch to HB stars (the R
2-parameter). We find that previous bounds derived from static stellar models do not capture the effects of the resonant production of light dark photons leading to overly conservative constraints, and that they over-estimate the effects of heavier dark photons on the RGB-tip luminosity. This leads to differences in the constraints of up to an order of magnitude in the kinetic mixing parameter.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献