Coupling elastic media to gravitational waves: an effective field theory approach

Author:

Belgacem EnisORCID,Maggiore MicheleORCID,Moreau Thomas

Abstract

Abstract The interaction of a gravitational wave (GW) with an elastic body is usually described in terms of a GW “force” driving the oscillations of the body's normal modes. However, this description is only possible for GW frequencies for which the response of the elastic body is dominated by a few normal modes. At higher frequencies the normal modes blend into a quasi-continuum and a field-theoretical description, as pioneered by Dyson already in 1969, becomes necessary. However, since the metric perturbation hμν is an intrinsically relativistic object, a consistent coupling to GWs can only be obtained within a relativistic (and, in fact generally covariant) theory of elasticity. We develop such a formalism using the methods of modern effective field theories, and we use it to provide a derivation of the interaction of elastic bodies with GWs valid also in the high-frequency regime, providing a first-principle derivation of Dyson's result (and partially correcting it). We also stress that the field-theoretical results are obtained working in the TT frame, while the description in terms of a force driving the normal modes is only valid in the proper detector frame. We show how to transform the results between the two frames. Beside an intrinsic conceptual interest, these results are relevant to the computation of the sensitivity of the recently proposed Lunar Gravitational Wave Antenna.

Publisher

IOP Publishing

Reference36 articles.

1. Lunar Gravitational-wave Antenna;LGWA Collaboration;Astrophys. J.,2021

2. Opportunities and limits of lunar gravitational-wave detection;Cozzumbo,2023

3. The Lunar Gravitational-wave Antenna: Mission Studies and Science Case;Ajith,2024

4. Laser Interferometer Space Antenna;LISA Collaboration,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3