Preheating with deep learning

Author:

Yoon Jong-HyunORCID,Cléry Simon,Gross Mathieu,Mambrini Yann

Abstract

Abstract We apply deep learning techniques to the late-time turbulent regime in a post-inflationary model where a real scalar inflaton field and the standard model Higgs doublet interact with renormalizable couplings between them. After inflation, the inflaton decays into the Higgs through a trilinear coupling and the Higgs field subsequently thermalizes with gauge bosons via its SU(2)×U(1) gauge interaction. Depending on the strength of the trilinear interaction and the Higgs self-coupling, the effective mass squared of Higgs can become negative, leading to the tachyonic production of Higgs particles. These produced Higgs particles would then share their energy with gauge bosons, potentially indicating thermalization. Since the model entails different non-perturbative effects, it is necessary to resort to numerical and semi-classical techniques. However, simulations require significant costs in terms of time and computational resources depending on the model used. Particularly, when SU(2) gauge interactions are introduced, this becomes evident as the gauge field redistributes particle energies through rescattering processes, leading to an abundance of UV modes that disrupt simulation stability. This necessitates very small lattice spacings, resulting in exceedingly long simulation runtimes. Furthermore, the late-time behavior of preheating dynamics exhibits a universal form by wave kinetic theory. Therefore, we analyze patterns in the flow of particle numbers and predict future behavior using CNN-LSTM (Convolutional Neural Network combined with Long Short-Term Memory) time series analysis. In this way, we can reduce our dependence on simulations by orders of magnitude in terms of time and computational resources.

Publisher

IOP Publishing

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3