Machine-learning Love: classifying the equation of state of neutron stars with transformers

Author:

Gonçalves Gonçalo,Ferreira Márcio,Aveiro João,Onofre Antonio,Freitas Felipe F.,Providência Constança,Font José A.

Abstract

Abstract The use of the Audio Spectrogram Transformer (AST) model for gravitational-wave data analysis is investigated. The AST machine-learning model is a convolution-free classifier that captures long-range global dependencies through a purely attention-based mechanism. In this paper a model is applied to a simulated dataset of inspiral gravitational wave signals from binary neutron star coalescences, built from five distinct, cold equations of state (EOS) of nuclear matter. From the analysis of the mass dependence of the tidal deformability parameter for each EOS class it is shown that the AST model achieves a promising performance in correctly classifying the EOS purely from the gravitational wave signals, especially when the component masses of the binary system are in the range [1,1.5]M . Furthermore, the generalization ability of the model is investigated by using gravitational-wave signals from a new EOS not used during the training of the model, achieving fairly satisfactory results. Overall, the results, obtained using the simplified setup of noise-free waveforms, show that the AST model, once trained, might allow for the instantaneous inference of the cold nuclear matter EOS directly from the inspiral gravitational-wave signals produced in binary neutron star coalescences

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Reference68 articles.

1. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA;KAGRA, LIGO Scientific, Virgo, VIRGO Collaboration;Living Rev. Rel.,2018

2. Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A;LIGO Scientific, Virgo, Fermi-GBM, INTEGRAL Collaboration;Astrophys. J. Lett.,2017

3. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral;LIGO Scientific, Virgo Collaboration;Phys. Rev. Lett.,2017

4. Multi-messenger Observations of a Binary Neutron Star Merger

5. GW170817: Measurements of neutron star radii and equation of state;LIGO Scientific, Virgo Collaboration;Phys. Rev. Lett.,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3