Tracking the multifield dynamics with cosmological data: a Monte Carlo approach

Author:

Giarè William,De Angelis Mariaveronica,van de Bruck Carsten,Di Valentino Eleonora

Abstract

Abstract We introduce a numerical method specifically designed for investigating generic multifield models of inflation where a number of scalar fields ϕ K are minimally coupled to gravity and live in a field space with a non-trivial metric 𝒢> IJ K ). Our algorithm consists of three main parts. Firstly, we solve the field equations through the entire inflationary period, deriving predictions for observable quantities such as the spectrum of scalar perturbations, primordial gravitational waves, and isocurvature modes. We also incorporate the transfer matrix formalism to track the behavior of adiabatic and isocurvature modes on super-horizon scales and the transfer of entropy to scalar modes after the horizon crossing. Secondly, we interface our algorithm with Boltzmann integrator codes to compute the subsequent full cosmology, including the cosmic microwave background anisotropies and polarization angular power spectra. Finally, we develop a novel sampling algorithm able to efficiently explore a large volume of the parameter space and identify a sub-region where theoretical predictions agree with observations. In this way, sampling over the initial conditions of the fields and the free parameters of the models, we enable Monte Carlo analysis of multifield scenarios. We test all the features of our approach by analyzing a specific model and deriving constraints on its free parameters. Our methodology provides a robust framework for studying multifield inflation, opening new avenues for future research in the field.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Some inflationary models under the light of Planck 2018 results;Astroparticle Physics;2024-09

2. Testing scale-invariant inflation against cosmological data;Journal of Cosmology and Astroparticle Physics;2024-07-01

3. Inflation, the Hubble tension, and early dark energy: An alternative overview;Physical Review D;2024-06-27

4. Gravitational waves in a cyclic Universe: resilience through cycles and vacuum state;Journal of Cosmology and Astroparticle Physics;2024-06-01

5. Is natural inflation in agreement with CMB data?;Journal of Cosmology and Astroparticle Physics;2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3