Astrometric microlensing of primordial black holes with Gaia

Author:

Verma Himanshu,Rentala Vikram

Abstract

Abstract The Gaia space telescope allows for unprecedented accuracy for astrometric measurements of stars in the Galaxy. In this work, we explore the sensitivity of Gaia to detect primordial black hole (PBH) dark matter through the distortions that PBHs would create in the apparent trajectories of background stars, an effect known as astrometric microlensing (AML). We present a novel calculation of the lensing probability, and we combine this with the existing publicly released Gaia eDR3 stellar catalog to predict the expected rate of AML events that Gaia will see. We also compute the expected distribution of a few event observables, which will be useful for reducing backgrounds. Assuming that the astrophysical background rate of AML like events due to other sources is negligible, we then compute the potential exclusion that could be set on the parameter space of PBHs with a monochromatic mass function. We find that Gaia is sensitive to PBHs in the range of 0.4 M –5 × 107 M , and has peak sensitivity to PBHs of ∼ 10 M for which it can rule out as little as a fraction 3 × 10-4 of dark matter composed of PBHs. With this exquisite sensitivity, Gaia has the potential to rule out a PBH origin for the gravitational wave signals seen at LIGO/Virgo. Our novel calculation of the lensing probability includes for the first time, the effect of intermediate duration lensing events, where the lensing event lasts for a few years, but for a period which is still shorter than the Gaia mission lifetime. The lower end of our predicted mass exclusion is especially sensitive to this class of lensing events. As and when time-series data for Gaia is released, and once we have a better understanding of the astrophysical background rate to AML signals, our prediction of the lensing rate and event observable distributions will be useful to estimate the true exclusion/discovery of the PBH parameter space utilizing this data.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Reference100 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3