Prospects of probing dark matter condensates with gravitational waves

Author:

Banerjee Shreya,Bera Sayantani,Mota David F.

Abstract

Abstract The Lambda-Cold Dark Matter model explains cosmological observations most accurately till date. However, it is still plagued with various shortcomings at galactic scales. Models of dark matter such as superfluid dark matter, Bose-Einstein Condensate(BEC) dark matter and fuzzy dark matter have been proposed to overcome some of these drawbacks. In this work, we probe these models using the current constraint on the gravitational wave (GW) propagation speed coming from the binary neutron star GW170817 detection by LIGO-Virgo detector network and use it to study the allowed parameter space for these three models for Advanced LIGO+Virgo, LISA, IPTA and SKA detection frequencies. The speed of GW has been shown to depend upon the refractive index of the medium, which in turn, depends on the dark matter model parameters through the density profile of the galactic halo. We constrain the parameter space for these models using the bounds coming from GW speed measurement and the Milky Way radius bound. Our findings suggest that with Advanced LIGO-Virgo detector sensitivity, the three models considered here remain unconstrained. A meaningful constraint can only be obtained for detection frequencies ≤ 10-9 Hz, which falls in the detection range of radio telescopes such as IPTA and SKA. Considering this best possible case, we find that out of the three condensate models, the fuzzy dark matter model is the most feasible scenario to be falsified/validated in near future.

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics

Reference106 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New criterion for the existence of dark matter in neutron stars;Physical Review D;2024-06-24

2. Short review of the main achievements of the scalar field, fuzzy, ultralight, wave, BEC dark matter model;Frontiers in Astronomy and Space Sciences;2024-02-12

3. An SZ-like effect on cosmological gravitational wave backgrounds;Journal of Cosmology and Astroparticle Physics;2023-12-01

4. Self-interactions of ULDM to the rescue?;Journal of Cosmology and Astroparticle Physics;2023-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3