Abstract
Abstract
The triple-probe technique (TPT) is a diagnostic widely used to determine the electron temperature in various devices and plasma conditions. It was developed for measurements in low-pressure gas-discharge plasmas in the absence of a magnetic field. This paper presents a comparison of the experimental results obtained by swept Langmuir probe (LP) measurements with those obtained by the TPT in magnetized plasmas in three experimental machines with different magnetic field magnitudes (0.01–1.15 T). The reliability of the triple-probe results for the electron temperature in tokamak plasmas at higher magnetic fields is discussed. It was found that the larger the magnetic field, the more the TPT overestimates the electron temperature compared with single swept LPs. The explanation proposed in this paper is based on a shift in the floating potential towards the plasma potential in the presence of a magnetic field, yielding a more positive voltage measured by the TPT and therefore higher electron temperatures. Using the extended formula for the electron probe current in the presence of a magnetic field a correction factor is derived such that the TPT yields a temperature similar to that of the swept LP techniques.
Funder
MSMT
Institute of Plasma Physics of the CAS
IAEA CRP F13019
Joint Research Project
Subject
Condensed Matter Physics,Nuclear Energy and Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献