Thermal confinement and transport in spherical tokamaks: a review

Author:

Kaye S MORCID,Connor J WORCID,Roach C MORCID

Abstract

Abstract In this paper, we review the thermal plasma confinement and transport properties observed and predicted in low aspect ratio tokamaks, or spherical tokamaks (STs), which can depart significantly from those observed at higher aspect ratio. In particular, thermal energy confinement scalings show a strong, near linear dependence of energy confinement time on toroidal magnetic field, while the dependence on plasma current is more modest, the opposite of what is seen at higher aspect ratio. STs have revealed a very strong improvement in normalized confinement with decreasing collisionality, much stronger than at higher aspect ratio, which bodes well for an ST-based fusion pilot plant should this trend continue at an even lower collisionality than has already been accessed. These differences arise because of fundamental differences in transport in STs due to the more extreme toroidicity (i.e. reduced region of bad curvature), and to the relatively larger E r × B shearing rates, both of which can suppress electrostatic drift wave instabilities at both ion and electron gyroradius scales. In addition, electromagnetic effects are much stronger in STs because they operate at high β T . Gyrokinetic (GK) studies, coupled with low- and high-k turbulence measurements, have shed light on the underlying physics controlling transport. At lower β T , both ion- and electron-scale electrostatic drift turbulence may be responsible for transport. At higher βT , microtearing, kinetic ballooning, and hybrid trapped electron/kinetic ballooning modes increasingly play a role, and they have a much stronger impact in the core of ST plasmas than at higher aspect ratio. Flow shear affects the balance between ion- and electron-scale modes. Non-linear GK simulations find regimes where the electron heat flux decreases with decreasing collisionality, consistent with the experimental global normalized confinement scaling. The ST is unique in that the relatively low toroidal magnetic field allows for localized measurements of electron-scale turbulence, and this coupled with turbulence measurements at ion-scales has facilitated detailed comparisons with GK simulations. These data have provided compelling evidence for the presence of ion temperature gradient and electron temperature gradient turbulence in some plasmas, and direct experimental support for the impact of experimental actuators like rotation shear, density gradient and magnetic shear on turbulence and transport.

Funder

U.S. Dept of Energy

EPSRC

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3