Abstract
Abstract
Transport simulation is performed by integrated code using reduced transport models (Toda S et al 2019 Phys. Plasmas
26 012510) in a kinetic electron condition for turbulent heat transport including the effect of zonal flows in helical plasmas. A reduced model can be formulated for the heat diffusivity using only the linear properties, or can be constructed by considering the expression of the quasilinear flux. These reduced models reproduce nonlinear gyrokinetic simulation results for ion temperature gradient mode turbulence by a linear growth rate and zonal flow decay time. Temperature profiles can be obtained when the turbulent heat transport is evaluated by reduced models at each time step in the evolution of integrated simulation. Computational cost using the reduced models where linear gyrokinetic simulation is performed at each time step in the integrated simulation is about two orders of magnitude lower than that using nonlinear gyrokinetic simulation. Stationary temperature profiles are predicted by simulation, in which, the linear simulation is performed at each time step in the integrated simulation for steady heating power. The density profile and the edge temperature are needed in this simulation.
Funder
Collaborative Research Program of the Research Institute for Applied Mechanics, Kyushu University
JFRS-1 supercomputer system at the Computational Simulation Centre of the International Fusion Energy Research Centre (IFERC-CSC) at the Rokkasho Fusion Institute of QST
NIFS Collaboration Research Programs
JSPS KAKENHI Grant
Subject
Condensed Matter Physics,Nuclear Energy and Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献