Abstract
Abstract
An effort to achieve high-energetic ion beams from the interaction of ultrashort laser pulses with a plasma, volumetric acceleration mechanisms beyond target normal sheath acceleration have gained attention. A relativistically intense laser can turn a near critical density plasma slowly transparent, facilitating a synchronized acceleration of ions at the moving relativistic critical density front. While simulations promise extremely high ion energies in this regime, the challenge resides in the realization of a synchronized movement of the ultra-relativistic laser pulse (
a
0
≳
30) driven reflective relativistic electron front and the fastest ions, which imposes a narrow parameter range on the laser and plasma parameters. We present an analytic model for the relevant processes, confirmed by a broad parameter simulation study in 1D- and 3D-geometry. By tailoring the pulse length and plasma density profiles at the front side, we can optimize the proton acceleration performance and extend the regions in parameter space of efficient ion acceleration at the relativistic density surface.
Funder
Saxon Ministry for Science, Culture and Tourism
Center of Advanced Systems Understanding
Federal Ministry of Education and Research
Subject
Condensed Matter Physics,Nuclear Energy and Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献