Physics-based control of neoclassical tearing modes on TCV

Author:

Kong MORCID,Felici FORCID,Sauter OORCID,Galperti C,Vu TORCID,Ham C JORCID,Hender T C,Maraschek MORCID,Reich MORCID

Abstract

Abstract This paper presents recent progress in studies of neoclassical tearing modes (NTMs) on TCV, concerning the new physics learned and how this physics contributes to a better real-time (RT) control of NTMs. A simple technique that adds a small (sinusoidal) sweeping to the target electron cyclotron (EC) beam deposition location has proven effective both for the stabilization and prevention of 2 / 1 NTMs. This relaxes the strict requirement on beam-mode alignment for NTM control, which is difficult to ensure in RT. In terms of the EC power for NTM stabilization, a control scheme making use of RT island width measurements has been tested on TCV. NTM seeding through sawtooth (ST) crashes or unstable current density profiles (triggerless NTMs) has been studied in detail. A new NTM prevention strategy utilizing only transient EC beams near the relevant rational surface has been developed and proven effective for preventing ST-seeded NTMs. With a comprehensive modified Rutherford equation (co-MRE) that considers the classical stability both at zero and finite island width, the prevention of triggerless NTMs with EC beams has been simulated for the first time. The prevention effects are found to result from the local effects of the EC beams (as opposed to global current profile changes), as observed in a group of TCV experiments scanning the deposition location of the preemptive EC beam. The co-MRE has also proven able to reproduce well the island width evolution in distinct plasma scenarios on TCV, ASDEX Upgrade and MAST, with very similar constant coefficients. The co-MRE has the potential to be applied in RT to provide valuable information, such as the EC power required for NTM control with RT-adapted coefficients, contributing to both NTM control and integrated control with a limited set of actuators.

Funder

Swiss National Science Foundation

Euratom

RCUK

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3