Hydrogen isotope effects on recombination dominant plasmas in NAGDIS-II

Author:

Shi JielinORCID,Kaizawa Hideki,Uematsu Yuta,Tanaka HirohikoORCID,Kajita ShinORCID,Ohno NoriyasuORCID,Sawada Keiji,Ding HongbinORCID

Abstract

Abstract The detachment processes of the hydrogen (H) and deuterium (D) plasmas are comparatively investigated in the linear plasma device NAGDIS-II. The laser Thomson scattering measurements demonstrate that the recombination rate of the H plasma is greater than that of the D plasma as the neutral pressure increases in the molecular activated recombination (MAR) dominant detachment phase. As the recombination process by MAR is strongly dependent on the vibrational and rotationally excited states of the molecule, the rovibrational quantum state populations of the H and D molecules are measured using the Fulcher-α band spectroscopy. The results indicate that the vibrational temperature in the electronic ground state is considerably higher than the rotational temperature during detachment. The reaction rate coefficients for MARs due to charge exchange chains (CX-MAR) and dissociative attachment chains (DA-MAR) are calculated by the collision-radiation model under the measured temperature conditions. It can be observed that the CX-MAR is larger than the DA-MAR for both H and D, and that the CX-MAR of H is larger than the CX-MAR of D at electron temperatures T e above 1 eV. In consideration of the experimentally observed vibrational and rotational excitation temperatures, the reaction rate coefficients of CX-MAR and DA-MAR are increasing in the low T e region. These calculations are in accordance with the experimental results, which indicate that recombination processes due to MAR are more predominant in the H plasma compared to the D plasma. Furthermore, a transition from MAR to electron–ion recombination processes is observed in the D plasma at T e below 0.5 eV.

Funder

China Scholarship Council

National Key Research and Development Program of China

NIFS Collaboration Research program

Japan Society for the Promotion of Science

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3