Mesoscopic transport in KSTAR plasmas: avalanches and the E × B staircase

Author:

Choi Minjun JORCID,Kwon Jae-Min,Qi LeiORCID,Diamond P HORCID,Hahm T S,Jhang HogunORCID,Kim JuhyungORCID,Leconte MORCID,Kim Hyun-SeokORCID,Kang JisungORCID,Park Byoung-Ho,Chung Jinil,Lee JaehyunORCID,Kim Minho,Yun Gunsu SORCID,Nam Y U,Kim JaewookORCID,Ko Won-HaORCID,Lee K D,Juhn J W,

Abstract

Abstract The self-organization is one of the most interesting phenomena in the non-equilibrium complex system, generating ordered structures of different sizes and durations. In tokamak plasmas, various self-organized phenomena have been reported, and two of them, coexisting in the near-marginal (interaction dominant) regime, are avalanches and the E × B staircase. Avalanches mean the ballistic flux propagation event through successive interactions as it propagates, and the E × B staircase means a globally ordered pattern of self-organized zonal flow layers. Various models have been suggested to understand their characteristics and relation, but experimental researches have been mostly limited to the demonstration of their existence. Here we report detailed analyses of their dynamics and statistics and explain their relation. Avalanches influence the formation and the width distribution of the E × B staircase, while the E × B staircase confines avalanches within its mesoscopic width until dissipated or penetrated. Our perspective to consider them the self-organization phenomena enhances our fundamental understanding of them as well as links our findings with the self-organization of mesoscopic structures in various complex systems.

Funder

EPSRC

NRF of Korea

Publisher

IOP Publishing

Reference93 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Turbulent relaxation patterns in SOL plasma;Plasma Physics and Controlled Fusion;2024-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3