Study of the erosion and redeposition of W considering the kinetic energy distribution of incident ions through a semi-analytical model

Author:

Cappelli LORCID,Fedorczak N,Gunn J P,Di Genova SORCID,Guterl JORCID,Serre EORCID

Abstract

Abstract In today’s nuclear fusion devices, erosion of high-Z metallic plasma-facing materials (PFMs) is mainly caused by physical sputtering. That is, by the exchange of energy between plasma ions and the atoms in the walls. In most of the numerical codes currently in use impinging plasma is approximated as a fluid. By averaging the incident particles’ energy distribution the high-energy population of the eroded material is underestimated. For heavy materials such as W, high-energy eroded particles tend to ionize far from the wall and they are less affected by the sheath electric field hence, not being attracted back to the wall, they have a higher chance to contaminate the core plasma. This could in turn result in an underestimation of the net erosion sources. In this work, a semi-analytical model was developed to include the energy distribution of the incident particles. Then, by Monte Carlo method, the net erosion of tungsten from a smooth PFM was calculated. The results show that the kinetic description in energy is important only for incident particles ionized once. For instance, it is particularly important for plasma ions such as Deuterium. It is seen that Deuterium contribution to the W net sources is not always negligible if compared to light impurities or to tungsten self-sputtering in the range of plasma parameters tested. Finally, results show that the difference between the fluid and kinetic models becomes more pronounced for high-screening plasma conditions.

Funder

EUROfusion

A*Midex, a French “Investissements d’Avenir” program

Centre National de la Recherche Scientifique

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3