A comparative study of internal kink stability in EU DEMO designs with negative and positive triangularity

Author:

Zhou LinaORCID,Liu YueqiangORCID,Siccinio Mattia,Fable Emiliano,Wu Tingting,Kurki-Suonio Taina,Varje Jari,Liu DeyongORCID

Abstract

Abstract Internal kink (IK) instability is investigated for European demonstration fusion reactor (EU DEMO) plasmas in both negative triangularity (NT) and positive triangularity (PT) configurations. For NT plasmas, the IK becomes more unstable as an ideal conformal wall moves away from the plasma boundary, with the mode growth rate saturating at the wall radial location of about b / a = 1.5 , where a is the plasma minor radius and b the wall radial location. The plasma resistivity destabilizes the IK mode. The effect of sub-sonic toroidal plasma flow is sufficiently weak and can thus be ignored for these EU DEMO equilibria. These results are consistent with those for PT plasmas, albeit with larger mode growth rate in the NT configuration. Both perturbative and self-consistent magneto-hydrodynamic (MHD)-kinetic hybrid calculations predict (partial) stabilization of the IK modes in both NT and PT configurations, with inclusion of various kinetic contributions. Precessional drift motion of trapped fusion-born alphas in EU DEMO produces weak stabilization to the IK mode. Stronger stabilization occurs with the toroidal precession of trapped thermal particles (ions and electrons) and the bounce-transit motion of thermal ions. The stabilization is similar between the NT and PT configurations, due to the similarity of the mode eigenfunction (occupying a nearly circular region in the plasma core) despite the sign difference in the triangularity. The non-perturbative MHD-kinetic hybrid model predicts much less stabilization of the mode than the perturbative model, primarily due to the self-consistent determination of the mode eigenvalue in the former. Generally, no significant difference in the IK mode stability is found between the NT and PT plasmas in EU DEMO.

Funder

the U.S. DoE Office of Science under Contract

the Fundamental Research Funds for the Central Universities

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3