Impact of impurity seeding on the electron energy distribution function in the COMPASS divertor region

Author:

Dimitrova MORCID,Popov Tsv K,Kovacic J,Dejarnac R,Gunn J P,Ivanova P,Imrisek M,Stöckel J,Vondracek P,Hron M,Panek R

Abstract

Abstract In the COMPASS tokamak, series of experiments were performed aimed at studying the impact of nitrogen, neon, and argon impurity seeding on the electron energy distribution function (EEDF) in the divertor region. The experiments were conducted in D-shaped, L-mode, deuterium plasmas. In order to obtain the radial distribution of the floating potential, ion saturation current, electron temperatures, and densities, the current-voltage characteristics were measured by Langmuir probes embedded in the COMPASS tokamak divertor. The properties of the plasma in the divertor region were measured before and during impurity seeding. Before the N2 seeding, the EEDF was bi-Maxwellian with a low-energy electron fraction with temperatures 3.5–5 eV, and a higher-energy one with temperatures in the range of 10 eV to 23 eV. During seeding with an increasing number of molecules per second, the EEDF changed from bi-Maxwellian to Maxwellian and the electron temperature decreased. The time-evolution was studied of the change in the EEDF during N2 seeding. When the seeding was carried out by a valve in the private flux region, the duration of the transition from a bi-Maxwellian to a Maxwellian EEDF was about 10–15 ms. When the N2 seeding took place through a low-field side valve, the transition from a bi-Maxwellian to a Maxwellian EEDF took longer −25–45 ms. The temporal evolution was also analyzed of the plasma parameters’ radial profiles when neon and argon were puffed using a valve in the divertor low-field side. The application is discussed of the probe measurements’ results to calculating the parallel heat-flux densities in the divertor region of the COMPASS tokamak.

Funder

FP7 Fusion Energy Research

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3