Neural networks as effective surrogate models of radio-frequency quadrupole particle accelerator simulations

Author:

Villarreal JoshuaORCID,Winklehner DanielORCID,Koser DanielORCID,Conrad Janet MORCID

Abstract

Abstract Radio-frequency quadrupoles (RFQs) are multi-purpose linear particle accelerators that simultaneously bunch and accelerate charged particle beams. They are ubiquitous in accelerator physics, especially as injectors to higher-energy machines, owing to their impressive efficiency. The design and optimization of these devices can be lengthy due to the need to repeatedly perform high-fidelity simulations. Several recent papers have demonstrated that machine learning can be used to build surrogate models (fast-executing replacements of computationally costly beam simulations) for order-of-magnitude computing time speedups. However, while these pilot studies are encouraging, there is room to improve their predictive accuracy. Particularly, beam summary statistics such as emittances (an important figure of merit in particle accelerator physics) have historically been challenging to predict. For the first time, we present a surrogate model trained on 200 000 samples that yields < 6% mean average percent error for the predictions of all relevant beam output parameters from defining RFQ design parameters, solving the problem of poor emittance predictions by identifying and including hidden variables which were not accounted for previously. These surrogate models were made possible by using the Julia language and GPU computing; we briefly discuss both. We demonstrate the utility of surrogate modeling by performing a multi-objective optimization using our best model as a callback in the objective function to select an optimal RFQ design. We consider trade-offs in RFQ performance for various choices of Pareto-optimal design variables—common issues for any multi-objective optimization scheme. Lastly, we make recommendations for input data preparation, selection, and neural network architectures that pave the way for future development of production-capable surrogate models for RFQs and other particle accelerators.

Funder

National Science Foundation

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3