How robust are modern graph neural network potentials in long and hot molecular dynamics simulations?

Author:

Stocker Sina,Gasteiger JohannesORCID,Becker Florian,Günnemann Stephan,Margraf Johannes TORCID

Abstract

Abstract Graph neural networks (GNNs) have emerged as a powerful machine learning approach for the prediction of molecular properties. In particular, recently proposed advanced GNN models promise quantum chemical accuracy at a fraction of the computational cost. While the capabilities of such advanced GNNs have been extensively demonstrated on benchmark datasets, there have been few applications in real atomistic simulations. Here, we therefore put the robustness of GNN interatomic potentials to the test, using the recently proposed GemNet architecture as a testbed. Models are trained on the QM7-x database of organic molecules and used to perform extensive molecular dynamics simulations. We find that low test set errors are not sufficient for obtaining stable dynamics and that severe pathologies sometimes only become apparent after hundreds of ps of dynamics. Nonetheless, highly stable and transferable GemNet potentials can be obtained with sufficiently large training sets.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Artificial Intelligence,Human-Computer Interaction,Software

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3