Abstract
Abstract
The Higgs boson couplings to bottom and top quarks have been measured and agree well with the Standard Model predictions. Decays to lighter quarks and gluons, however, remain elusive. Observing these decays is essential to complete the picture of the Higgs boson interactions. In this work, we present the perspectives for the 14 TeV LHC to observe the Higgs boson decay to gluon jets assembling convolutional neural networks, trained to recognize abstract jet images constructed embodying particle flow information, and boosted decision trees with kinetic information from Higgs-strahlung
Z
H
→
ℓ
+
ℓ
−
+
g
g
events. We show that this approach might be able to observe Higgs to gluon decays with a significance of around 2.4σ improving significantly previous prospects based on cut-and-count analysis. An upper bound of BR(H → gg)≤1.74 × BR
SM
(H → gg) at 95% confidence level after 3000 fb−1 of data is obtained using these machine learning techniques.
Funder
Conselho Nacional de Desenvolvimento Cientıéfico (CNPq), Brasil
China Postdoctoral Science Foundation
Subject
Artificial Intelligence,Human-Computer Interaction,Software
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献