Explainable Gaussian processes: a loss landscape perspective

Author:

Niroomand Maximilian PORCID,Dicks LukeORCID,Pyzer-Knapp Edward O,Wales David JORCID

Abstract

Abstract Prior beliefs about the latent function to shape inductive biases can be incorporated into a Gaussian process (GP) via the kernel. However, beyond kernel choices, the decision-making process of GP models remains poorly understood. In this work, we contribute an analysis of the loss landscape for GP models using methods from chemical physics. We demonstrate ν-continuity for Matérn kernels and outline aspects of catastrophe theory at critical points in the loss landscape. By directly including ν in the hyperparameter optimisation for Matérn kernels, we find that typical values of ν can be far from optimal in terms of performance. We also provide an a priori method for evaluating the effect of GP ensembles and discuss various voting approaches based on physical properties of the loss landscape. The utility of these approaches is demonstrated for various synthetic and real datasets. Our findings provide insight into hyperparameter optimisation for GPs and offer practical guidance for improving their performance and interpretability in a range of applications.

Funder

International Chair at the Interdisciplinary Institute for Artificial Intelligence at 3iA Cote d’Azur,

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Reference54 articles.

1. Measuring the robustness of Gaussian processes to kernel choice;Stephenson,2021

2. Structure discovery in nonparametric regression through compositional kernel search;Duvenaud,2013

3. When Gaussian process meets big data: a review of scalable GPs;Liu;IEEE Trans. Neural Netw. Learn. Syst.,2020

4. Fast sparse Gaussian process methods: the informative vector machine;Lawrence,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3