Leveraging trust for joint multi-objective and multi-fidelity optimization

Author:

Irshad Faran,Karsch Stefan,Döpp AndreasORCID

Abstract

Abstract In the pursuit of efficient optimization of expensive-to-evaluate systems, this paper investigates a novel approach to Bayesian multi-objective and multi-fidelity (MOMF) optimization. Traditional optimization methods, while effective, often encounter prohibitively high costs in multi-dimensional optimizations of one or more objectives. Multi-fidelity approaches offer potential remedies by utilizing multiple, less costly information sources, such as low-resolution approximations in numerical simulations. However, integrating these two strategies presents a significant challenge. We propose the innovative use of a trust metric to facilitate the joint optimization of multiple objectives and data sources. Our methodology introduces a modified multi-objective (MO) optimization policy incorporating the trust gain per evaluation cost as one of the objectives of a Pareto optimization problem. This modification enables simultaneous MOMF optimization, which proves effective in establishing the Pareto set and front at a fraction of the cost. Two specific methods of MOMF optimization are presented and compared: a holistic approach selecting both the input parameters and the fidelity parameter jointly, and a sequential approach for benchmarking. Through benchmarks on synthetic test functions, our novel approach is shown to yield significant cost reductions—up to an order of magnitude compared to pure MO optimization. Furthermore, we find that joint optimization of the trust and objective domains outperforms sequentially addressing them. We validate our findings with the specific use case of optimizing particle-in-cell simulations of laser-plasma acceleration, highlighting the practical potential of our method in the Pareto optimization of highly expensive black-box functions. Implementation of the methods in existing Bayesian optimization frameworks is straightforward, with immediate extensions e.g. to batch optimization possible. Given their ability to handle various continuous or discrete fidelity dimensions, these techniques have wide-ranging applicability in tackling simulation challenges across various scientific computing fields such as plasma physics and fluid dynamics.

Publisher

IOP Publishing

Reference60 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3