Discovering interpretable physical models using symbolic regression and discrete exterior calculus

Author:

Manti SimoneORCID,Lucantonio AlessandroORCID

Abstract

Abstract Computational modeling is a key resource to gather insight into physical systems in modern scientific research and engineering. While access to large amount of data has fueled the use of machine learning to recover physical models from experiments and increase the accuracy of physical simulations, purely data-driven models have limited generalization and interpretability. To overcome these limitations, we propose a framework that combines symbolic regression (SR) and discrete exterior calculus (DEC) for the automated discovery of physical models starting from experimental data. Since these models consist of mathematical expressions, they are interpretable and amenable to analysis, and the use of a natural, general-purpose discrete mathematical language for physics favors generalization with limited input data. Importantly, DEC provides building blocks for the discrete analog of field theories, which are beyond the state-of-the-art applications of SR to physical problems. Further, we show that DEC allows to implement a strongly-typed SR procedure that guarantees the mathematical consistency of the recovered models and reduces the search space of symbolic expressions. Finally, we prove the effectiveness of our methodology by re-discovering three models of continuum physics from synthetic experimental data: Poisson equation, the Euler’s elastica and the equations of linear elasticity. Thanks to their general-purpose nature, the methods developed in this paper may be applied to diverse contexts of physical modeling.

Funder

HORIZON EUROPE European Research Council

Publisher

IOP Publishing

Reference37 articles.

1. Distilling free-form natural laws from experimental data;Schmidt;Science,2009

2. Automated reverse engineering of nonlinear dynamical systems;Bongard;Proc. Natl Acad. Sci.,2007

3. Discovering governing equations from data by sparse identification of nonlinear dynamical systems;Brunton;Proc. Natl Acad. Sci.,2016

4. AI Feynman: a physics-inspired method for symbolic regression;Udrescu;Sci. Adv.,2020

5. Discovering symbolic models from deep learning with inductive biases;Cranmer,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3