Transforming two-dimensional tensor networks into quantum circuits for supervised learning

Author:

Song ZhihuiORCID,Xu Jinchen,Zhou Xin,Ding XiaodongORCID,Shan Zheng

Abstract

Abstract There have been numerous quantum neural networks reported, but they struggle to match traditional neural networks in accuracy. Given the huge improvement of the neural network models’ accuracy by two-dimensional tensor network (TN) states in classical tensor network machine learning (TNML), it is promising to explore whether its application in quantum machine learning can extend the performance boundary of the models. Here, we transform two-dimensional TNs into quantum circuits for supervised learning. Specifically, we encode two-dimensional TNs into quantum circuits through rigorous mathematical proofs for constructing model ansätze, including string-bond states, entangled-plaquette states and isometric TN states. In addition, we propose adaptive data encoding methods and combine with TNs. We construct a tensor-network-inspired quantum circuit (TNQC) supervised learning framework for transferring TNML from classical to quantum, and build several novel two-dimensional TN-inspired quantum classifiers based on this framework. Finally, we propose a parallel quantum machine learning method for multi-class classification to construct 2D TNQC-based multi-class classifiers. Classical simulation results on the MNIST benchmark dataset show that our proposed models achieve the state-of-the-art accuracy performance, significantly outperforming other quantum classifiers on both binary and multi-class classification tasks, and beat simple convolutional classifiers on a fair track with identical inputs. The noise resilience of the models makes them successfully run and work in a real quantum computer.

Funder

Major Science and Technology Projects in Henan Province, China

Publisher

IOP Publishing

Reference52 articles.

1. Quantum circuit learning;Mitarai;Phys. Rev. A,2018

2. Parameterized quantum circuits as machine learning models;Benedetti;Quantum Sci. Technol.,2019

3. Variational quantum algorithms;Cerezo;Nat. Rev. Phys.,2021

4. Hierarchical quantum classifiers;Grant;npj Quantum Inf.,2018

5. Towards quantum machine learning with tensor networks;Huggins;Quantum Sci. Technol.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3