ICP registration with SHOT descriptor for arresters point clouds

Author:

Lu SenjianORCID,Zhu WenORCID,Hou BeipingORCID,Dong JianweiORCID,Zheng YangbinORCID,Qi XiaoxinORCID,Zhu YuzhenORCID,Yu AihuaORCID

Abstract

Abstract Arresters are one of the critical components of the power system. However, due to the arrester’s regular and uniform umbrella skirt, both traditional manual detection methods and existing computer vision approaches exhibit limitations in accuracy and efficiency. This paper proposes an automatic, robust, efficient arrester point cloud registration method to address this problem. First, a robotic arm maneuvers a depth camera to capture point cloud data from various perspectives. Then, the fast global registration point cloud coarse registration method based on the signature of histograms of orientations descriptor to produce preliminary registration results. This result is ultimately used as the initial value of the improved iterative closest point algorithm to refine the registration further. Experimental results on various data sets collected from arrester and public data sets show that the algorithm’s root mean square error is less than 0.1 mm, meeting the requirements of the engineering application of arrester detection.

Funder

Leading Goose” R&D Program of Zhejiang

Scientific Research Project of Zhejiang Education Department

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3