Abstract
Abstract
The characterization of nuisance parameters in digital silicon photomultipliers (SiPMs) is important to their understanding and future development. Methods able to distinguish the types of events are necessary to obtain fair and legitimate measurements. In this work, the zero photon probability (ZPP) method and the time delay (TD) method are used to measure the dark noise of digital SiPMs free from the contribution of correlated noise such as afterpulsing and crosstalk. It highlights the unique features of digital SiPMs such as the holdoff delay, the digital output signal, and the embedded processing (e.g. the selection of the interval sampling width). The two methods correctly separate the correlated and uncorrelated events in digital SiPMs and therefore the determination of a true photon detection efficiency (PDE) is possible. The ZPP method is also implemented inside a digital SiPM using embedded digital signal processing.
Funder
Regroupement Stratégique en Microsystèmes du Québec
Fonds de Recherche du Québec - Nature et Technologies
CMC Microsystems
Natural Sciences and Engineering Research Council of Canada
Arthur B. McDonald Institute
Subject
Applied Mathematics,Instrumentation,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献