Simulation alignment of optical system for space gravitational wave telescope

Author:

Yu MiaoORCID,Huang Lanjun,Liu Yinghong,Zou Donglan,Lin Hong-an,Li JiancongORCID,Wang Zhi,Wu Yanxiong

Abstract

Abstract The performance of telescopes, important components of space interferometry systems, directly affects the accuracy of gravitational wave signals. Space gravitational wave telescopes typically employ an off-axis four-mirror system. When aligned, this system not only has multiple misalignments, but also exhibits interrelated aberrations from various misalignments. These characteristics may lead to difficult alignment of the telescope system as well as significant deviation between the position of the telescope after alignment and the ideal position. To address these issues, first, a sensitivity matrix equation was established between the misalignment of optical components and the Fringe Zernike coefficients. Based on the sensitivity matrix equation, a damping least-squares evaluation function was constructed to reduce the significant deviation between the aligned and ideal positions. Second, a typical optical system of a space gravitational wave telescope was designed, and the sensitivity matrix was calculated. The relationship between the wavefront distortions caused by misalignments in each optical component was examined. To simplify telescope installation, a strategy using secondary mirrors as compensatory elements was proposed. Finally, to verify the effectiveness of the scheme, 200 sets of tolerance files were randomly generated. Based on the evaluation function of the damping least-squares method, a reasonable damping factor was set to limit the solution range of the misalignment, which enabled calculating the secondary mirror compensation amount. Experimental results indicate that after aligning the 200 random telescope files, the root-mean-square wavefront error was reduced to less than 0.0030λ, and the maximum error between the magnification after alignment and the ideal position magnification was only 0.57%, which confirms the feasibility of this alignment scheme.

Funder

National Natural Science Foundation of China

Guangdong Province Key Field R&D Plan Project

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3