Interference-free laser-based temperature and CO-concentration measurements for shock-heated isooctane and isooctane/ethanol blends

Author:

He DongORCID,Si TingORCID,Fikri Mustapha,Luo Xisheng

Abstract

Abstract Species concentration (e.g. CO) and temperature measurements in the combustion field require fast-response technique without interfering species. In the last decade, tunable diode lasers have been established as strong technique to measure species such as CO, CO2, and H2O as well as temperature with high sensitivity. The drawback is the degree of interference that might hamper the robustness of the technique. In this work simultaneous measurements of temperature and CO concentration were carried out using an interference-free mid-infrared laser-based absorption technique behind reflected shock waves. Two transition lines of CO (P(v″ = 0, J″ = 21) and P(v″ = 1, J″ = 21)) in the fundamental vibrational band near 4.87 and 4.93 μm, respectively, were selected. Absorbance interferences from CO2 and H2O at room and high temperatures were evaluated. Spectroscopic parameters for the development of the system were measured: line strengths and collisional broadening coefficients (in Ar) of both lines were obtained at 1020–1950 K by using the scanned-wavelength direct-absorption method. The technique was demonstrated for non-reactive and reactive mixtures. For the non-reactive case, temperature and CO concentration were measured at 1030–1910 K and 1.0–3.7 bar. For the reactive case, oxidation of i-C8H18/O2/Ar and i-C8H18/C2H5OH/O2/Ar mixtures were investigated at three equivalence ratios of 2.0, 1.0, and 0.5. The two newly adopted lines exhibited good performance in the detection of CO concentration and are immune to interferences from CO2 and H2O. In addition, the simulated data from the state-of-the-art isooctane/ethanol mechanisms in literature were compared with the measured data, showing overall good agreement.

Funder

Provincial Natural Science Foundation of Anhui

Fundamental Research Funds for the Central Universities

frontier scientific research program of Deep Space Exploration Laboratory

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3