An intelligent diagnosis method of rolling bearing based on multi-scale residual shrinkage convolutional neural network

Author:

Zhao XiaoqiangORCID,Zhang YazhouORCID

Abstract

Abstract The vibration signals of rolling bearings are affected by changing operating conditions and environmental noise, so they are characterized by multi-scale complexity. Deep residual shrinkage network can achieve bearing fault diagnosis in strong noise environment, but ignore the multi-scale complexity feature. To address this problem, we propose a multi-scale residual shrinkage convolutional neural network for fault diagnosis of rolling bearing. In this method, a multi-scale residual shrinkage layer based on multi-scale learning and a residual shrinkage block is constructed. By stacking multiple multi-scale residual shrinkage layers, the features of vibration signals are automatically learned from the input data. In addition, to establish the connection of different vibration signals and to reduce the number of parameters in the network, we design a separable convolution block using residual connections and separable convolution. By verifying the effectiveness of the proposed method in Case Western Reserve University and Mechanical Failure Prevention Technology datasets, the results show that the proposed method not only has good noise resistance in strong noise environments, but also has high diagnostic accuracy and good generalization performance in different load condition domains. The proposed method is compared with three other deep learning methods under the same experimental conditions, and the results show that it is superior in rolling bearing fault diagnosis.

Funder

This work was financially supported by the National Key Research and Development Plan

the Science and Technology Project of Gansu Province

the Industrial Support Project of Education Department of Gansu Province

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3