Compound fault diagnosis of rolling bearings with few-shot based on DCGAN-RepLKNet

Author:

Zhu HongzeORCID,Fang TingORCID

Abstract

Abstract To guarantee the security of personnel on-site, diagnosing the malfunction of mechanical apparatus is imperative. The accomplishments within the domain of fault diagnosis have been partly attributed to the advancements in deep learning technology, which excels in feature extraction through extensive datasets. However, it is difficult to collect sufficient data to train high-precision fault diagnosis models in practice. A novel method called deep convolution generative adversarial network (DCGAN)-RepLKNet is proposed to address the challenge of gathering enough data to train high-precision fault diagnosis models in practice. This technique involves transforming a one-dimensional time series vibration signal into a two-dimensional (2D) time-frequency map via wavelet transform technology. Subsequently, DCGAN expands the 2D time–frequency map samples produced. Finally, RepLKNet is used to classify the fault samples. The proposed method has been verified in the PU compound fault data set and bearing real damage data set. The results show that the accuracy of this method has been improved by 5.70%, 6.34%, 9.08%, and 16.35% compared to 2D-CNN under different sizes datasets in case 1, and by 24.5% compared to 2D-CNN in case 2.

Funder

National College Student Research and Training Program of Anhui University of Technology

Publisher

IOP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3