Research on multitask model of object detection and road segmentation in unstructured road scenes

Author:

Gao ChengfeiORCID,Zhao Fengkui,Zhang Yong,Wan Maosong

Abstract

Abstract With the rapid development of artificial intelligence and computer vision technology, autonomous driving technology has become a hot area of concern. The driving scenarios of autonomous vehicles can be divided into structured scenarios and unstructured scenarios. Compared with structured scenes, unstructured road scenes lack the constraints of lane lines and traffic rules, and the safety awareness of traffic participants is weaker. Therefore, there are new and higher requirements for the environment perception tasks of autonomous vehicles in unstructured road scenes. The current research rarely integrates the target detection and road segmentation to achieve the simultaneous processing of target detection and road segmentation of autonomous vehicle in unstructured road scenes. Aiming at the above issues, a multitask model for object detection and road segmentation in unstructured road scenes is proposed. Through the sharing and fusion of the object detection model and road segmentation model, multitask model can complete the tasks of multi-object detection and road segmentation in unstructured road scenes while inputting a picture. Firstly, MobileNetV2 is used to replace the backbone network of YOLOv5, and multi-scale feature fusion is used to realize the information exchange layer between different features. Subsequently, a road segmentation model was designed based on the DeepLabV3+ algorithm. Its main feature is that it uses MobileNetV2 as the backbone network and combines the binary classification focus loss function for network optimization. Then, we fused the object detection algorithm and road segmentation algorithm based on the shared MobileNetV2 network to obtain a multitask model and trained it on both the public dataset and the self-built dataset NJFU. The training results demonstrate that the multitask model significantly enhances the algorithm’s execution speed by approximately 10 frames per scond while maintaining the accuracy of object detection and road segmentation. Finally, we conducted validation of the multitask model on an actual vehicle.

Funder

Yong Zhang

Fengkui Zhao

Publisher

IOP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3