Abstract
Abstract
In this work, we present novel machine learning and differentiable programming enhanced calibration techniques used to improve the energy resolution of the Silicon Drift Detectors (SDDs) of the VIP-2 underground experiment at the Gran Sasso National Laboratory. We achieve for the first time a full width at half maximum in VIP-2 below 180 eV at 8 keV, improving around 10 eV on the previous state-of-the-art. SDDs energy resolution is a key parameter in the VIP-2 experiment, which is dedicated to searches for physics beyond the standard quantum theory, targeting Pauli exclusion principle violating atomic transitions. Additionally, we show that this method can correct for potential miscalibrations, requiring less fine-tuning with respect to standard methods.
Funder
Austrian Science Fund
Foundational Questions Institute
H2020 TEQ
John Templeton Foundation
Instituto Nazionale di Fisica Nucleare
Centro Ricerche Enrico Fermi
Subject
Applied Mathematics,Instrumentation,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献