Abstract
Abstract
Railway point machines (RPMs) are safety-critical pieces of equipment closely related to train operation safety. Due to their high failure rate, it is urgent to develop an effective diagnosis method for RPMs. Considering the easy-to-collect and anti-interference characteristics of vibration signals, this paper develops a vibration-based diagnosis method. First, to address the difficulty of multi-scale permutation entropy in characterizing the fault information contained in the derivatives of the raw signal, a novel feature named derivative multi-scale permutation entropy is designed, which can further complete the fault information of RPMs. Second, to further improve the diagnosis accuracy of support vector machines, a decision fusion strategy based on three feature sets is developed, which can further improve the diagnosis accuracy, especially in the normal-reverse direction. Finally, the effect and superiority of the proposed method are verified based on the collected vibration signals from Xi’an Railway Signal Co.,Ltd by experiment comparisons. The diagnosis accuracies of reverse-normal and normal-reverse directions reach 99.43% and 100% respectively, indicating its superiority.
Funder
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献