Review of advances in tool condition monitoring techniques in the milling process

Author:

T MohanrajORCID,E S Kirubakaran,Madheswaran Dinesh Kumar,M L Naren,P Suganithi Dharshan,Ibrahim Mohamed

Abstract

Abstract Milling is an extremely adaptable process that can be utilized to fabricate a wide range of shapes and intricate 3D geometries. The versatility of the milling process renders it useful for the production of a diverse range of components and products in several industries, including aerospace, automotive, electronics, and medical equipment. Monitoring tool conditions is essential for maintaining product quality, minimizing production downtime, and maximizing tool life. Advances in this field have been driven by the need for increased productivity, reduced tool wear, and improved process efficiency. Tool condition monitoring (TCM) in the milling process is a critical aspect of machining operations. TCM involves assessing the health and performance of cutting tools used in milling machines. As technology evolves, staying updated with the latest developments in this field is essential for manufacturers seeking to optimize their milling operations. However, addressing the challenges associated with sensor integration, data analysis, and cost-effectiveness remains crucial. To fill this research gap, this paper provides an overview of the extensive literature on monitoring milling tool conditions. It summarizes the key focus areas, including tool wear sensors and the application of various machine learning and deep learning algorithms. It also discusses the potential applications of TCM beyond wear detection, such as predicting tool breakage, tool wear, the cutting tool’s remaining lifetime, and the challenges faced by TCMs. This review also provides suggestions for potential future research endeavors and is anticipated to offer valuable insights for the development of advanced TCMs in terms of tool wear monitoring and predicting remaining useful life.

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-time tool condition monitoring with the internet of things and machine learning algorithms;International Journal of Computer Integrated Manufacturing;2024-09-06

2. Tool Condition Monitoring in the Milling Process Using Deep Learning and Reinforcement Learning;Journal of Sensor and Actuator Networks;2024-07-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3