Reference velocity demodulation method for accelerometer shock testing based on enhanced CEEMD and threshold correction

Author:

Zhang WenyiORCID,Zhang Zhenhai,Song Qianqian,Sun Haolin,Yang Jun,Hu Hongbo,Yang Xiaowei,Ji Jianrong,Su Jianjun,Zhang Zhenshan

Abstract

Abstract High-G accelerometers are critical for measuring high shock signals and must be calibrated to improve measurement accuracy. A laser Doppler velocimeter (LDV) is required to calibrate a high-G accelerometer to provide a high-precision reference velocity. The LDV signal must be demodulated to obtain the velocity. However, the phase method is susceptible to noise interference, while the conventional periodic distribution method is challenging to demodulate and severely affected by signal oscillations. We propose a novel periodic distribution method based on enhanced complementary ensemble empirical mode decomposition (CEEMD) and threshold correction to demodulate the LDV signal. First, the LDV signal is processed with CEEMD to obtain multiple intrinsic mode functions (IMFs) and the residual. Next, each IMF is partially zeroed to obtain the noise-reduced LDV signal. Then, the over-threshold peak of the noise-reduced LDV signal is calculated. Finally, the demodulated velocity of the LDV signal is obtained by correcting the noise-reduced LDV signal according to the over-threshold peak point and calculating all the zero points. Simulation and experimental results show that the proposed method outperforms the phase method based on enhanced CEEMD and the periodic distribution method based on enhanced CEEMD and can significantly reduce noise interference. The results show that the proposed method can accurately demodulate the LDV signal to obtain a highly accurate reference velocity, improving the reliability of accelerometer shock testing.

Funder

National Defense Technology of China

National Natural Science Foundation of China

Major Pre-Research Background Project

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3