Impurity gas detection for SNF canisters using probabilistic deep learning and acoustic sensing*

Author:

Zhuang BozhouORCID,Gencturk BoraORCID,Oberai Assad A,Ramaswamy Harisankar,Meyer Ryan,Sinkov Anton,Good Morris

Abstract

Abstract Monitoring impurity gases in spent nuclear fuel (SNF) canisters is a novel structural health monitoring approach for SNF in dry storage. The SNF canisters are sealed containers that do not facilitate visual access to the inside. Acoustic sensing can be deployed by taking advantage of the pathways unobstructed by internal hardware. Although the ultrasonic time-of-flight measurement can provide valuable information, it is limited in its ability to discern the concentration of only one impurity gas. As such, deep learning algorithms, particularly convolutional neural networks (CNNs), offer a promising solution. In this study, CNN-based probabilistic deep learning models were implemented to detect and quantify multiple impurity gases in helium. An experimental platform was established to simulate canister conditions, and ultrasonic test data were collected. The presence of argon and air in helium at concentrations ranging from 0% to 1.2% at increments of 0.05% was considered. The multi-layer perceptron, decision tree, and logistic regression classifiers achieved high accuracies when distinguishing pure helium from helium with impurities. CNN with dropout layers and CNN using maximum likelihood estimation showed a similar performance, indicating their ability to capture uncertainties. The ensemble CNN model exhibited improved predictions and the ability to balance individual gas concentration by integrating 1D- and 2D-CNN models. These findings contribute probabilistic deep learning solutions for impurity gas detection and analysis within SNF canisters, thus ensuring safe storage and management of SNFs.

Funder

Nuclear Energy University Program

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3