An intelligent vision recognition method based on deep learning for pointer meters

Author:

Chen Leisheng,Wu XingORCID,Sun Chao,Zou TingORCID,Meng KaiORCID,Lou Peihuang

Abstract

Abstract Nowadays, pointer instruments remain the main state monitoring devices in the power industry, because they have strong mechanical stability to resist electromagnetic interferences compared with digital instruments. Although the object detection algorithms based on deep learning have widely been used in the field of instrument detection, the meter recognition process still relies on threshold segmentation to recognize object points and on Hough transform to extract the meter pointer. An intelligent vision recognition method based on YOLOv5 and U2-Net network (YLU2-Net) is proposed to improve the accuracy and efficiency of meter recognition in a complex environment. Firstly, the pointer meter is located in the instrument images by using the YOLOv5 network as a region of interest (RoI). Then, the instrument RoI is processed by means of perspective transformation and image resizing. Thirdly, an improved U2-Net image segmentation method with the deep separable convolution and the focal loss function is devised to distinguish the pointers and scales from the background in the instrument RoI. Further, a dimension reduction reading method with the polar coordinate transformation is developed to calculate the meter reading accurately and efficiently. Finally, the ablation experiment is conducted to test the performance of each algorithm module in our method, and the competition experiment is completed to compare our method with other state-of-the-art ones. The experimental results verify the accuracy and efficiency of the YLU2-Net recognition method proposed.

Funder

the special fund of Jiangsu Province for scientific and technological achievements transformation

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference28 articles.

1. Fast R-CNN;Girshick,2015

2. Faster R-CNN: Towards real-time object detection with region proposal networks;Ren;IEEE Trans. on Pattern Analysis and Machine Intelligence,2017

3. Mask R-CNN;He,2017

4. SSD: single shot multibox detector;Liu,2016

5. You only look once: unified, real-time object detection;Redmon,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3