Quantitative and nondestructive determination of residual stress for SiO2 thin film by laser-generated surface acoustic wave technique

Author:

Zhang LiORCID,Xiao Xia,Qi HaiyangORCID,Huang Yiting,Qin Huiquan

Abstract

Abstract The laser-generated surface acoustic wave (SAW) technique is a promising method to measure the mechanical properties of thin films quickly and nondestructively. Residual stress is inevitable during the processing and manufacturing of integrated circuits, which will have a major impact on the physical and mechanical properties of the thin film materials and cause deterioration to the structural strength. In this study, the SAW technique based method is proposed for quantitative and nondestructive measuring the residual stress in the nanostructured films. The method is verified by the experiment measuring the SiO2 films in the thickness range of 100–2000 nm. The experimental procedures, including signal excitation, reception and processing, are described in detail. By matching the SAW experimental dispersion curve with the calculated theoretical dispersion curve containing the residual stress, the residual stress of the SiO2 films along [110] and [100] crystallographic orientation of the Si wafer is successfully quantified. The determination results are ranged from −65.5 to 421.1 MPa and the stress value increases as the film thickness decreases, revealing the residual stress of the SiO2 film is compressive. Meanwhile, the conventional substrate curvature method as a comparison is used to verify the correctness and superiority of the proposed SAW method for the residual stress determination.

Funder

Public Welfare Technology Research Program of Science and Technology

National Science Foundation of China

Department of Zhejiang Province

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3