Optimized design of the restrictor for a MEMS thermal gas flowmeter

Author:

Yang ZhiORCID,Zhai Yuan,Deng Bo,Yin Hao,Lu Zhuang,Xiang Yi,Shi Jinliang,Zeng Zhijie,Wu YingORCID

Abstract

Abstract To improve the linear range of measurement, a restrictor is usually added to the main flow channel of a capillary-tube-type thermal mass flowmeter. However, as the linear range of the flowmeter increases, the singularity will occur in the low mass flow velocity section of the flowmeter calibration data, which will lead to a significant decrease in the measurement accuracy in this section. To address this issue, first, this paper developed a microelectromechanical system (MEMS) thermal gas flowmeter based on the principle of capillary-tube-type thermal mass flow. Then, the effect of the bypass ratio on its performance was further investigated using quantitative analysis and was verified using Fluent numerical analysis. In addition, to explain the singularity, the bypass ratio-sensitivity relationship model was built. Based on this model, the bypass ratio can be changed by adjusting the restrictor parameters to optimize the performance of the MEMS thermal gas flowmeter. Moreover, six numerical simulation models of restrictors with different aperture diameters and aperture numbers were designed. The numerical analysis results show that within a certain range of aperture diameters and aperture numbers, the singularity is more easily weakened when the aperture diameter decreases or the aperture number increases. Finally, the restrictor with the optimum aperture number and suitable aperture diameter was selected as the test model for calibration, and the goodness of fit R2 of the calibration results is improved from 0.9937 to 0.9972, the singularity in the low mass flow velocity section is significantly weakened, and the sensitivity is improved.

Funder

Open fund project from Chongqing engineering research center of intelligent sensing technology and microsystem

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3