ODCS-YOLO detection algorithm for rail surface defects based on omni-dimensional dynamic convolution and context augmentation module

Author:

Gao Wenqi,Gu WenjuanORCID,Yin Yanchao,Li Tiangui,Dong Penglin

Abstract

Abstract To solve the problems of easy miss and false detection on rail surface defects caused by small size, dense target, and high similarity between features and background, this paper proposed an improved detection algorithm in complex background. First, the conventional convolution of YOLOv5 backbone network is replaced with omni-dimensional dynamic convolution (ODConv), which improves the feature extraction capability of the network without increasing the computational cost; second, to improve the model’s performance in detecting tiny objects, a two-layer context augmentation module (CAM) is introduced into the path aggregation network (PAN) structure; finally, the traditional non-maximum suppression (NMS) algorithm is replaced by the Soft-NMS algorithm in the network post-processing to reduce the false-alarm and miss-rate. The experimental results on the Railway Track Fault Detection public dataset show that the OD-YOLO (OD stands for ODConv) and C-PAN (CAM module is introduced into PAN) structures could achieve better performance in the same type of improved algorithms; compared with the baseline algorithm YOLOv5, the ODCS-YOLO (OD stands for ODConv, C stands for CAM and S stands for Soft-NMS) algorithm improves the precision by 12.4%, the recall by 3.6%, the map50 by 8.6% and the GFLOPs is reduced by 0.6. Compared with seven classical object detection algorithms, the ODCS-YOLO algorithm achieves the highest detection accuracy, which makes it able to meet the real-time detection requirements of rail surface defects in real working conditions. The ODCS-YOLO model provides certain technical support for the defects detection and a new method for the detection of dense small objects.

Funder

NSFC

ChingMu Tech. Ltd Research Project ‘WiTracker’

Yunnan Fundamental Research Projects

Scientific Research Fund Project of Yunnan Education Department

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3