Fast visual inertial odometry with point–line features using adaptive EDLines algorithm

Author:

Zhao ShenggenORCID,Zhang TaoORCID,Wei HongyuORCID

Abstract

Abstract In mainstream visual inertial odometry (VIO) systems, the method of positional solution by feature point extraction and matching in the image is widely used. However, the tracking accuracy of point features is dependent on the texture richness in the environment. Although many existing algorithms introduce line features in the front end to improve the system’s environmental adaptability, most of them sacrifice system real-time in exchange for higher positioning accuracy. The extraction and matching of line features often require more time, thus failing to meet the real-time requirements of the system for localization. In this paper, we therefore propose a fast VIO fused with point and line features, which enables the system to maintain a high level of positioning robustness in dim and changing light environments with low time cost. The point–line features VIO algorithm is based on adaptive thresholding of EDLines. By adding an adaptive thresholding component to the EDLines algorithm, the robustness of line feature extraction is enhanced to better adapt to changes in ambient lighting. The time needed for line feature extraction is also significantly reduced. A line feature matching algorithm based on geometric information and structural similarity is proposed, which enables fast and accurate line feature matching. The algorithm is compared with point-line visual-inertial odometry and monocular visual-inertial state estimator algorithms on the European robotics challenge dataset and real-world scenes. Many experiments prove that the algorithm has improved in both real time and accuracy.

Funder

Fundamental Research Funds for the Central Universities

remaining funds cultivation project of National Natural Science Foundation of Southeast University

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tightly coupled visual-inertial fusion with image enhancement for robust positioning;Measurement Science and Technology;2024-06-20

2. Offline map fusion algorithm for indoor mobile robot based on line features;International Conference on Image, Signal Processing, and Pattern Recognition (ISPP 2024);2024-06-13

3. A PTV-based feature-point matching algorithm for binocular stereo photogrammetry;Measurement Science and Technology;2023-09-20

4. UAV Navigation With Monocular Visual Inertial Odometry Under GNSS-Denied Environment;IEEE Transactions on Geoscience and Remote Sensing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3