Advancing robust state estimation of wheeled robots in degenerate environments: harnessing ground manifold and motion states

Author:

Liang BowenORCID,Tao YouruiORCID,Zhu HuaboORCID,Song Yao

Abstract

Abstract State estimation is crucial for enabling autonomous mobility in mobile robots. However, traditional localization methods often falter in degraded environments, including issues like visual occlusion, lidar performance degradation, and global navigation satellite system signal interference. This paper presents a novel estimation approach for wheeled robots, exclusively utilizing proprioceptive sensors such as encoders and inertial measurement units (IMU). Initially, the motion manifolds extracted from the historical trajectories are used to assist the encoder in realizing the orientation estimation. Furthermore, a hybrid neural network is designed to categorize the robot’s operational state, and the corresponding pseudo-constraints are added to improve the estimation accuracy. We utilize an error state Kalman filter for the encoder and IMU data fusion. Lastly, comprehensive testing is conducted using both datasets and real-world robotic platforms. The findings underscore that the integration of manifold and motion constraints within our proposed state estimator substantially elevates accuracy compared to conventional approaches. Compare with the methods commonly used in engineering, the accuracy of this method is improved by more than 20%. Crucially, this methodology enables dependable estimation even in degraded environments.

Funder

the Central Government Guided Local Science and Technology Development Fund

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3