An ultrasonic shear wave viscometer for low viscosity Newtonian liquids

Author:

Mastromarino SORCID,Rook R,De Haas D,Verschuur E D J,Rohde M,Kloosterman J L

Abstract

Abstract A method based on ultrasonic wave propagation is applied for the determination of the viscosity of low viscous liquids. A waveguide is used to remotely transmit the ultrasonic waves from a shear piezoelectric transducer into the liquid. At the solid–liquid interface, a guided wave mode, the shear mode, is used to extract the liquid viscosity. The energy of the reflected ultrasonic wave depends upon its operating frequency, the physical properties of the liquid (viscosity and density), and the waveguide (density and shear modulus). The results show that the attenuation of the waves, and thus the viscosity of the liquid, can be retrieved using this method. Measurements on water, ethanol, and mixtures of water/glycerol illustrate that the method can monitor changes in attenuation due to the viscosity of the liquid. The range of viscosities measured was between 0.8 and 60 mPa s. Compared to literature values, the relative error for these measurements was lower than 12% while the uncertainty in the measurements was lower than 5%. Besides its ability to measure low viscosities, this method offers advantages such as the capability to perform in-situ measurements of liquids in harsh environments, the omission of mechanical parts, and the possibility to handle small volumes of liquid. These features make this method suitable for low viscous liquids that are radioactive, corrosive and at high temperature.

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference28 articles.

1. Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies;Mason;Phys. Rev.,1949

2. Piezoelectric materials for high temperature transducers and actuators;Stevenson;J. Mater. Sci.: Mater. Elect.,2015

3. Determination of the high frequency viscoelastic properties for polymers using shear mode strip delay lines;Hunston;J. Poly. Sci.: Part C,1971

4. Viscoelastic measurement of polybutenes and low viscosity liquids using ultrasonic strip delay lines;Knauss;J. Polym. Sci.: Polym. Symp.,1973

5. Effect of viscosity on ultrasound wave reflection from a solid/liquid interface;Shah;Ultrasonics,1996

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3