Fabrication of thin inorganic temperature-sensitive paint using ball milling and its temporal response delay

Author:

Jung Juyong,Saito Shimpei,Someya SatoshiORCID,Baba Soumei,Takada NaokiORCID

Abstract

Abstract Temperature-sensitive paint (TSP) is widely used to measure the temperature distribution. A TSP is advantageous in terms of cost and spatiotemporal resolution. However, regardless of its thickness, a finite thickness introduces errors. An important issue regarding the thickness of the TSP is the temporal response delay. In this study, a thin TSP was fabricated using ball milling, and TSPs with a thickness <2 µm could be produced. However, the phosphorescence intensity decreased drastically after ball milling. A special system was designed to measure the temporal response delay caused by the TSP layer. A high-resolution measurement technique (210 kHz and 1.05 µm/pixel) was employed. Time delays were defined and calculated using both experimental and numerical approaches. Numerical simulations were conducted using the experimental data and the thermal properties of ZnO:Zn and epoxy, given that the thermal properties of TSP are unknown. From the time delay, it was found that the thermal diffusivity of the TSP was between those of ZnO:Zn and epoxy, and this result was considered reasonable. Although this study provides only a rough estimation of the thermal diffusivity of TSPs, it reveals a relationship between the time delay and thermal diffusivity, opening up the possibility of calculating the thermal diffusivity from the time delay. Our results can help advance the application of TSPs for temperature measurements in highly dynamic environments.

Funder

Japan Society for the Promotion of Science

New Energy and Industrial Technology Development Organization

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3