Research on high-precision angular measurement based on machine learning and optical vortex interference technology

Author:

Zhang XiaoxiaORCID,Zhao Donge,Ma YayunORCID,Yang Xuefeng,Chu Wenbo

Abstract

Abstract The paper innovatively constructs a regression prediction model based on the Stacking ensemble learning algorithm by utilizing the distortion degree of vortex optical interference patterns, achieving high-precision measurement of small angles. It constructs a regression prediction model based on the Stacking ensemble learning algorithm. Initially, in the spiral optical conjugate interference system, minute variations in the optical axis yield corresponding interference patterns, within an angle range of 0.0006° to 0.3°. The angle formed between the centroids of the upper two petals in the deformed interference patterns and the center is extracted as a feature for feature extraction. A dataset is established and randomly divided into training, validation, and testing sets in a 6:2:2 ratio. Subsequently, four models—support vector regression, particle swarm optimization back propagation, Gaussian process regression, and the stacking ensemble algorithm—are optimized for hyperparameters, trained, and evaluated based on coefficients of determination, root mean square error, and mean absolute error to compare their predictive performance. Through multiple rounds of training and prediction on randomly partitioned datasets, it is evident that the ensemble model exhibits a reduction in relative error compared to single learners, demonstrating that the Stacking-based ensemble algorithm can combine the strengths of base learners, showcasing superior predictive performance and enhanced stability. Moreover, the Stacking ensemble model achieves a measurement precision of 0.0006°, with a relative error maintained within 0.6%, indicating the feasibility of achieving high-precision measurement of tiny angles in the optical axis using machine learning and spiral optical conjugate interference systems.

Funder

Local Funds for Science and Technology Development Guided by the Central Finance

National Natural Science Foundation of China

Study on the optical calibration of the photoelectric interval velocity measuring devices

Study on detection characteristic mechanism and optical calibration of high speed target signal in photoelectric interval velocity measuring devices

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3