A substitution method for nanoscale capacitance calibration using scanning microwave microscopy

Author:

Morán-Meza José A,Delvallée Alexandra,Allal Djamel,Piquemal FrançoisORCID

Abstract

Abstract This paper presents a calibration method and an uncertainty budget for capacitance measurements performed on micrometric size capacitors at microwave frequencies and nanometric resolution using a scanning microwave microscopy (SMM). The method applies the classical one-port vector network analyzer calibration for SMM using three known capacitance standards. These standards are established from a commercial calibration kit placed close to the microcapacitors in order to be calibrated. The calibration kit is composed of a large number of Metal-Oxide-Semiconductor (MOS) microcapacitors with capacitance values C ranging from 0.1 fF to 8.6 fF. Diligent selection criteria were established for the choice of the three capacitors. Their capacitance values were calculated from the AFM measured values of the area of the top electrodes and the dielectric thickness and considering the contribution of fringing fields. The combined type uncertainty on these calculated values amounts between 5% and 14% in relative value (uncertainty given at one standard deviation). The comparison between the capacitance values measured on calibration kit capacitors using the calibrated SMM and the calculated values show a good agreement for capacitances higher than 0.8 fF within uncertainties varying between 6% and 9%. For smaller capacitances, most of the observed deviations are not significant at two standard deviations. The uncertainties are mostly dominated by dimensional measurements and less importantly by unwanted capacitance effects. Based on these results, capacitances of two sets of microcapacitors were calibrated. The combined uncertainties vary from 14% to 7% for capacitances ranging from 0.1 fF to 3.1 fF respectively. The permittivity values of the dielectric layer of the two samples have been determined. They are found equal to 4.0 and 4.1 with a standard uncertainty of 0.6 and correlate with the expected value of 3.9.

Funder

EMPIR project ADVENT

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference36 articles.

1. Design of nanocapacitors and associated materials challenges;Ekanayake;Curr. Appl. Phys.,2004

2. Introducing 10-nm FinFET technology in Microwind;Sicard;HAL Id hal-01558775,2017

3. Metrology;Int. Technol. Roadmap Semicond. 2.0,2015

4. Three-dimensional AlZnO/Al2O3/AlZnO nanocapacitor arrays on Si substrate for energy storage;Li;Nanoscale Res. Lett.,2012

5. Fabrication of silicon nanopillar-based nanocapacitor arrays;Chang;Appl. Phys. Lett.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3