Characterization of single channel liquid light guide coupling and SPAD array imaging for tumour margin estimation using fluorescence lifetime

Author:

Stewart Hazel LORCID,Hungerford GrahamORCID,Birch David J SORCID

Abstract

Abstract Surgery remains one of the key treatment options for tumour removal, and surgeons primarily rely on eye and touch to assess the boundary between healthy and cancerous tissue with no cellular information as guidance. There is therefore a need for a device or instrument that can be used by the surgeon in real-time during the surgical procedure to ensure as many of the cancerous cells and as few of the healthy cells have been removed as possible. Fluorescence approaches have previously demonstrated significant promise in this application, but clinical take-up has been limited and much more characterization of critical parameters needed before robotic surgery can be contemplated. Here we investigate two time-correlated single-photon counting (TCSPC) fluorescence lifetime systems for the detection of phantom tumour margins derived from silica sol-gels. A simple and low-cost liquid light guide system (LLG) incorporating a single photomultiplier detection channel and translational stage was developed. This provided a useful reference for a compact single-photon avalanche diode (SPAD) array camera system for fluorescence lifetime imaging microscopy (FLIM) which permits up to ∼25 000 in-pixel timing measurements at video rates in ambient light using only low energy (∼30 pJ) diode laser pulses to minimize cell and dye degradation. Measurements of phantom margins with sol-gel doped Rhodamine 6G (R6G) of fluorescence lifetime ∼4 ns using the LLG system demonstrates that for 7 mm excitation diameter and over 5–15 mm sol-gel LLG separation the sol-gel only region could be clearly identified 1 mm after the margin position, a widely accepted minimum surgical resolution. A comparison between measurements with the LLG and SPAD FLIM system using the sub-ns fluorescence lifetime of the FDA-approved dye indocyanine green (ICG) demonstrates that the minimum workable spatial resolution and sufficient speed are only achievable with such faster lifetimes using the SPAD FLIM system.

Funder

EPSRC OPTIMA DTC

EPSRC QUANTIC Quantum Technology Hub

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference35 articles.

1. Cancer tomorrow: a tool that predicts the future cancer incidence and mortality burden worldwide from the current estimates in 2018 up until 2040;Observatory,2018

2. Treat: develop new cancer treatments,2019

3. A practical guide for the use of indocyanine green and methylene blue in fluorescence-guided abdominal surgery;van Manen;J. Surg. Oncol.,2018

4. Optical surgical navigation for precision in tumor resections;Harmsen;Mol. Imaging Biol.,2017

5. Rapid pathology of lumpectomy margins with open-top light-sheet (OTLS) microscopy;Chen;Biomed. Opt. Express,2019

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3