Thermographic 3D particle tracking velocimetry for turbulent gas flows

Author:

Stelter MoritzORCID,Martins Fabio J W AORCID,Beyrau FrankORCID,Fond BenoîtORCID

Abstract

Abstract Turbulent flows are characterized by diverse and unsteady three-dimensional (3D) features that require 3D measurements to study. In case of non-isothermal flows, combined 3D measurements of temperature and velocity are necessary. In this paper, a thermographic 3D particle tracking velocimetry (thermographic 3D-PTV) concept is introduced for simultaneous 3D temperature and velocity measurements in turbulent gas flows. It is based on sub-micron thermographic phosphor particles seeded into the flow as flow tracers with low response times of a few microseconds. To obtain each tracer’s position and velocity, the measurement region is illuminated volumetrically using a double-pulse green laser and Mie-scattered light is imaged by four double-frame cameras. Following the pinhole model-based calibration of all cameras, 3D particle positions are computed for both laser pulse-times using a fast minimum line of sight reconstruction code. Three-component velocities are derived from tracking individual particles between these time steps. For simultaneous 3D thermometry, temperature dependent luminescence emissions from the same phosphor particles are exploited. These emissions are excited using a UV laser synchronized with the first green laser pulse and imaged using two cameras equipped with spectral filters for ratiometric phosphor thermometry. As a result, instantaneous 3D fields of discrete temperature and velocity measurements are obtained throughout the volume. The concept is demonstrated in a turbulent heated gas jet emerging from a circular nozzle at a particle image concentration of 0.005 particle per pixel, where the symmetry of the velocity and temperature distributions about the jet axis is successfully reconstructed.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference45 articles.

1. Two-frame 3d particle tracking;Pereira;Meas. Sci. Technol.,2006

2. Tomographic particle image velocimetry;Elsinga;Exp. Fluids,2006

3. Three-dimensional evolution of flow structures in transitional circular and chevron jets;Violato;Phys. Fluids,2011

4. 3D Lagrangian particle tracking in fluid mechanics;Schröder;Annu. Rev. Phys. Mech.,2023

5. Volumetric velocimetry for fluid flows;Discetti;Meas. Sci. Technol.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3